organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li Zhang, Yang Lu* and Qi-Tai Zheng

Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannong tan Street, Beijing 100050, People's Republic of China

Correspondence e-mail: luy@imm.ac.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.004 Å R factor = 0.052 wR factor = 0.154 Data-to-parameter ratio = 9.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(3,4-Dimethoxyphenyl)-4-(3,4,5-trimethoxyphenyl)perhydrofuro[3,4-c]furan

The title compound, $C_{23}H_{28}O_7$, is a furofuran derivative. In this structure, both furan rings adopt envelope conformations, and both benzene rings are planar.

Received 12 May 2006 Accepted 17 May 2006

Comment

The title compound, (I), which is also known as magnolin, was extracted from *Flos magnoliae* with ethyl acetate (Fang *et al.*, 2002) and recrystallized from ethanol. As a result of interest in the anti-inflammatory and anti-allergenic effects of (I) (Li *et al.*, 2002), we report its crystal stucture here (Fig. 1 and Table 1).

Bond lengths and angles within the molecule are normal (Allen *et al.*, 1987) and both furan rings (*A* and *B*) adopt envelope conformations. The flap atom of ring *A* is O1, at a distance of 0.503 (6) Å; the flap atom of ring *B* is O2, at a distance of 0.591 (6) Å. The dihedral angle between the planes through the four atoms of rings *A* and *B* is 119.6 (1)°. The torsion angle linking rings *A* and *C* is O1–C1–C7–C8 is 7.3 (4)°, and the torsion angle between rings *B* and *D* is C5–C4–C16–C17 of –96.4 (3)°.

Figure 1

© 2006 International Union of Crystallography All rights reserved A view of the molecular structure of magnolin, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.

Experimental

The title compound was prepared according to the procedure for extracting *Flos magnoliae* (Fang *et al.*, 2002). Crystals suitable for data collection were obtained by slow evaporation of an ethanol solution at 283 K over a period of two weeks.

Crystal data

 $\begin{array}{l} C_{23}H_{28}O_7\\ M_r = 416.45\\ Orthorhombic, P2_12_12_1\\ a = 8.2890 \ (17) \ \text{\AA}\\ b = 8.3880 \ (17) \ \text{\AA}\\ c = 30.875 \ (6) \ \text{\AA}\\ V = 2146.7 \ (7) \ \text{\AA}^3 \end{array}$

Data collection

MAC DIP 2030K diffractometer ω scans Absorption correction: none 6431 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.154$ S = 1.162648 reflections 272 parameters H-atom parameters constrained

Table 1

Selected torsion angles (°).

01-C1-C2-C3	-92.8(3)	C13-O3-C9-C8	41.0 (6)
C4-C5-C6-O1	88.4 (3)	C5-C4-C16-C17	-96.4(3)
O1-C1-C7-C8	7.3 (4)	C22-O6-C18-C17	1.5 (5)

Z = 4 $D_x = 1.289 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 295 (2) K Needle, colourless $0.60 \times 0.15 \times 0.15 \text{ mm}$

2648 independent reflections 2560 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$ $\theta_{\text{max}} = 27.3^{\circ}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0795P)^2 \\ &+ 0.5714P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.23 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.17 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: SHELXL97} \\ (\text{Sheldrick, 1997}) \\ \text{Extinction coefficient: 0.035 (4)} \end{split}$$

In the absence of significant anomalous dispersion effects, Friedel pairs were merged and the absolute configuration was assigned arbitrarily. The methyl H atoms were constrained to an ideal geometry, with C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.92–0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *DENZO* (Otwinowski & Minor, 1997); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

We acknowledge the financial support of the International Centre for Diffraction Data, Pennsylvania, USA.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Fang, H., Guo, Q. & Su, W. (2002). Chin. J. Pharm. Anal. 22, 342-345.
- Li, X. L. & Zhang, Y. Z. (2002). Chin. Traditional Herbal Drugs, 33, 1014– 1015.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.